Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural Model for the Cooperative Assembly of HIV-1 Rev Multimers on the RRE as Deduced from Analysis of Assembly-Defective Mutants

Identifieur interne : 000D80 ( Istex/Checkpoint ); précédent : 000D79; suivant : 000D81

Structural Model for the Cooperative Assembly of HIV-1 Rev Multimers on the RRE as Deduced from Analysis of Assembly-Defective Mutants

Auteurs : Chaitanya Jain [États-Unis] ; Joel G. Belasco [États-Unis]

Source :

RBID : ISTEX:EFED2187C649CBC58CBF80196DC14BFA6D5DAAEF

English descriptors

Abstract

Abstract: The functional efficacy of the HIV-1 Rev protein is highly dependent on its ability to assemble onto its HIV-1 RNA target (the RRE) as a multimeric complex. To elucidate the mechanism of multimeric assembly, we have devised two rapid and broadly applicable strategies for examining cooperative interactions between proteins bound to RNA, one based on cooperative translational repression of a two-site reporter and the other on gel shift analysis with crude E. coli extracts. Using these strategies, we have identified two distinct surfaces of Rev (head and tail) that are critical for different steps in multimeric assembly. Our data indicate that Rev assembles cooperatively on the RRE via a series of symmetrical tail-to-tail and head-to-head protein–protein interactions. The insights into molecular architecture suggested by these findings have enabled us to derive a structural model for Rev and its multimerization on the RRE.

Url:
DOI: 10.1016/S1097-2765(01)00207-6


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:EFED2187C649CBC58CBF80196DC14BFA6D5DAAEF

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Structural Model for the Cooperative Assembly of HIV-1 Rev Multimers on the RRE as Deduced from Analysis of Assembly-Defective Mutants</title>
<author>
<name sortKey="Jain, Chaitanya" sort="Jain, Chaitanya" uniqKey="Jain C" first="Chaitanya" last="Jain">Chaitanya Jain</name>
</author>
<author>
<name sortKey="Belasco, Joel G" sort="Belasco, Joel G" uniqKey="Belasco J" first="Joel G" last="Belasco">Joel G. Belasco</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EFED2187C649CBC58CBF80196DC14BFA6D5DAAEF</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S1097-2765(01)00207-6</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-CDVWQR6F-V/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000A05</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000A05</idno>
<idno type="wicri:Area/Istex/Curation">000A05</idno>
<idno type="wicri:Area/Istex/Checkpoint">000D80</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000D80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Structural Model for the Cooperative Assembly of HIV-1 Rev Multimers on the RRE as Deduced from Analysis of Assembly-Defective Mutants</title>
<author>
<name sortKey="Jain, Chaitanya" sort="Jain, Chaitanya" uniqKey="Jain C" first="Chaitanya" last="Jain">Chaitanya Jain</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Skirball Institute of Biomolecular Medicine and, Department of Microbiology, New York University School of Medicine, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Belasco, Joel G" sort="Belasco, Joel G" uniqKey="Belasco J" first="Joel G" last="Belasco">Joel G. Belasco</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>Skirball Institute of Biomolecular Medicine and, Department of Microbiology, New York University School of Medicine, New York</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Molecular Cell</title>
<title level="j" type="abbrev">MOLCEL</title>
<idno type="ISSN">1097-2765</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">7</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="603">603</biblScope>
<biblScope unit="page" to="614">614</biblScope>
</imprint>
<idno type="ISSN">1097-2765</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1097-2765</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Amino</term>
<term>Amino acid residues</term>
<term>Amino acid side chains</term>
<term>Amino acid substitutions</term>
<term>Amino acids</term>
<term>Belasco</term>
<term>Binding affinity</term>
<term>Binding domain</term>
<term>Binding domains</term>
<term>Binding site</term>
<term>Binding sites</term>
<term>Biochemical screening</term>
<term>Biol</term>
<term>Coli</term>
<term>Coli extracts</term>
<term>Coli strain</term>
<term>Colony color</term>
<term>Cooperative assembly</term>
<term>Cooperative interactions</term>
<term>Cullen</term>
<term>Dimer</term>
<term>Dimeric</term>
<term>Dimeric complexes</term>
<term>Dissociation constants</term>
<term>Electrophoretic mobility</term>
<term>Encoding</term>
<term>Escherichia coli</term>
<term>Galactosidase</term>
<term>Galactosidase activity</term>
<term>Head residues</term>
<term>Head surface</term>
<term>Helix</term>
<term>Human immunodeficiency virus type</term>
<term>Hydrophobic</term>
<term>Immunodeficiency</term>
<term>Intramolecular interface</term>
<term>Intrinsic affinity</term>
<term>Jain</term>
<term>Lacz</term>
<term>Malim</term>
<term>Methods enzymol</term>
<term>Molecular cell</term>
<term>Molecule</term>
<term>Monomer</term>
<term>Monomeric</term>
<term>Mrna</term>
<term>Multimer</term>
<term>Multimeric</term>
<term>Multimeric assembly</term>
<term>Multimerization</term>
<term>Multimerization mutants</term>
<term>Multimers</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Nucleating</term>
<term>Nucleating molecule</term>
<term>Phenotype</term>
<term>Plasmid</term>
<term>Plasmid library</term>
<term>Point mutation</term>
<term>Prev1</term>
<term>Protein concentration</term>
<term>Protein concentrations</term>
<term>Protein interactions</term>
<term>Protein residues</term>
<term>Radiolabeled</term>
<term>Reporter mrna</term>
<term>Repression ratio</term>
<term>Repression ratios</term>
<term>Residue</term>
<term>Retardation analysis</term>
<term>Secondary structure</term>
<term>Side chains</term>
<term>Single copy</term>
<term>Structural model</term>
<term>Substitution</term>
<term>Tail residues</term>
<term>Tail surface</term>
<term>Transformants</term>
<term>Translational</term>
<term>Translational repression</term>
<term>Trimeric complexes</term>
<term>Variant</term>
<term>Various complexes</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The functional efficacy of the HIV-1 Rev protein is highly dependent on its ability to assemble onto its HIV-1 RNA target (the RRE) as a multimeric complex. To elucidate the mechanism of multimeric assembly, we have devised two rapid and broadly applicable strategies for examining cooperative interactions between proteins bound to RNA, one based on cooperative translational repression of a two-site reporter and the other on gel shift analysis with crude E. coli extracts. Using these strategies, we have identified two distinct surfaces of Rev (head and tail) that are critical for different steps in multimeric assembly. Our data indicate that Rev assembles cooperatively on the RRE via a series of symmetrical tail-to-tail and head-to-head protein–protein interactions. The insights into molecular architecture suggested by these findings have enabled us to derive a structural model for Rev and its multimerization on the RRE.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Jain, Chaitanya" sort="Jain, Chaitanya" uniqKey="Jain C" first="Chaitanya" last="Jain">Chaitanya Jain</name>
</region>
<name sortKey="Belasco, Joel G" sort="Belasco, Joel G" uniqKey="Belasco J" first="Joel G" last="Belasco">Joel G. Belasco</name>
<name sortKey="Belasco, Joel G" sort="Belasco, Joel G" uniqKey="Belasco J" first="Joel G" last="Belasco">Joel G. Belasco</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 000D80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:EFED2187C649CBC58CBF80196DC14BFA6D5DAAEF
   |texte=   Structural Model for the Cooperative Assembly of HIV-1 Rev Multimers on the RRE as Deduced from Analysis of Assembly-Defective Mutants
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021